

Comprehensive Algebra Drill

The answers can be found in Part IV.

3. If $x + y = 4$ and $x - y = 2$, then $x^2 - y^2 =$

(A) 4
(B) 6
(C) 8
(D) 12
(E) 20

9. If $(x + 4)^2 = 63$, then $x =$

(A) -1.63
(B) -0.63
(C) 1.78
(D) 3.94
(E) 6.1

15. What are all the values of x for which $|x + 5| < 2$?

(A) $x > -3$ or $x < -7$
(B) $x < -7$
(C) $x > -3$
(D) $-7 < x < -3$
(E) $-3 < x < 7$

19. If $a + 3b + 6c = 12$, $-2a + b - c = 5$, and $4a - 2b - 4c = 1$, then $3a + 2b + c =$

(A) -10
(B) 0
(C) 10
(D) 16
(E) 18

20. For what value of x is $\frac{5x}{4x-2}$ undefined?

(A) -1
(B) $-\frac{1}{2}$
(C) 0
(D) $\frac{1}{2}$
(E) 1

23. If $x \neq 0$, then $(2^{3x})(8^{2x}) =$

(A) 2^{5x}
(B) 2^{6x}
(C) 2^{9x}
(D) 8^{5x}
(E) 16^{5x}

24. A train traveled 500 miles at an average speed of 60 miles per hour. Approximately how much longer would this same 500-mile trip take if the average speed had decreased by 25%?

(A) $3\frac{1}{2}$ hours
(B) $2\frac{7}{8}$ hours
(C) $2\frac{3}{4}$ hours
(D) $1\frac{3}{4}$ hours
(E) 1 hour

25. If y is directly proportional to x^3 and $y = 1.2$ when $x = 4$, what is the value of y when $x = 12$?

(A) 0.04
(B) 22.4
(C) 32.4
(D) 37.6
(E) 40.1

27. If j and k are both odd integers, which of the following must also be an odd integer?

(A) $(j + k)^5$
(B) $(j + k)^4$
(C) $j^5 + k^5 + 1$
(D) $j^4 + k^4 + 2$
(E) $\frac{j^5 + k^5}{5}$

30. The sum of the two roots of a quadratic equation is 6 and their product is 8. Which of the following could be the equation.

- (A) $x^2 - 6x + 8 = 0$
- (B) $x^2 + 8x - 6 = 0$
- (C) $x^2 - 8x + 6 = 0$
- (D) $x^2 + 6x - 8 = 0$
- (E) $x^2 - 6x - 8 = 0$

36. The distance, in feet, that an object travels is a function of the time over which it travels. In the equation $d(t) = at + \frac{1}{2}bt^2$, $d(t)$ represents the distance, in feet, traveled, t represents the time, in seconds, spent traveling, and a and b are constants. If $a = 10$ m/s and $b = 4$ m/s², which of the following is the closest approximation to the time it would take, in seconds, for an object to travel 36 feet?

- (A) 0.8
- (B) 1.8
- (C) 2.4
- (D) 4.6
- (E) 8.4